Сверхтвердые синтетические поликристаллические инструментальные материалы (ПСТМ)

Анализ особенностей и режущие свойства ПСТМ. Сверхтвердыми при­нято считать инструментальные материалы, имеющие твердость по Виккерсу при комнатной температуре свыше 35 ГПа.

Природный алмаз — самый твердый материал на Земле, который издавна применяется в качестве режущего инструмента. Принципиальное отличие мо — нокристаллического природного алмаза от всех других инструментальных ма­териалов, имеющих поликристаллическое строение, с точки зрения инстру­ментальщика состоит в возможности получения практически идеально острой и прямолинейной режущей кромки. Поэтому в конце XX века с развитием элек­троники, прецизионного машиностроения и приборостроения применение резцов из природных алмазов для микроточения зеркально чистых поверхно­стей оптических деталей, дисков памяти, барабанов копировальной техники и т. п. возрастает. Однако из-за дороговизны и хрупкости природные алмазы не применяются в общем машиностроении, где требования к обработке деталей не столь высоки.

Потребность в сверхтвердых материалах привела к тому, что в 1953 — 1957 годах в США и в 1959 году в СССР методом каталитического синтеза при вы­соких статических давлениях из гексагональных фаз графита (С) и нитрида бора (BN) были получены мелкие частицы кубических фаз синтетического алмаза и нитрида бора. Крупные поликристаллы, предназначенные для лез­вийных инструментов, были получены в промышленных условиях в начале 70-х годов.

Диаграмма состояния углерода и нитрида бора представлена на рис. 11.9.

В основе технологии изготовления поликристаллов диаметром 4-40 мм лежат два различных процесса: фазовый переход вещества из одного со­стояния в другое (собственно синтез) или спекание мелких частиц заранее синтезированного порошка ПСТМ. В нашей стране первым способом получают поликристаллический кубический нитрид бора (ПКНБ) марок композит 01 (эль — бор РМ) и композит 02 (бельбор), а также поликристаллический алмаз (ПКА) марок АСПК (карбонадо) и АСЕ (баллас). За рубежом изготовителями ПСТМ по технологии спекания являются три крупнейшие фирмы «General Electric» (США), «De Beers» (ЮАР) и «Sumitomo Electric» (Япония). Режущие инс­трументы из поликристаллов этих трех поставщиков производят сотни фирм во всем мире.

Усредненные показатели физико-механических свойств современных ПСТМ и твердых сплавов

ПСТМ — принципиально новые, как по технологии изготовления, так и по условиям эксплуатации инструментальные материалы. Ими можно обрабаты­
вать изделия при скоростях резания на порядок выше скоростей, допускае­мых при использовании твердосплавного инструмента. Кроме того, инструмент из ПКА имеет в десятки раз более высокую скорость, чем инструмент из твер­дых сплавов.

Сверхтвердые синтетические поликристаллические инструментальные материалы (ПСТМ)

Температура, °С

Рис. 11.9. Диаграмма состояния углерода и нитрида бора:

1 — линия равновесия слоистых и тетраэдрических фаз; 2 — об­ласть температурной зависимости порогового давления прямых фазовых переходов; 3 — линия плавления углерода и нитрида бора

Свойства

Поликристаллические СТМ

Вольфрамо­кобальтовые твердые сплавы

На основе нит­рида бора

На основе алма­за

1

2

3

4

HV, ГПа

40-45

70-100

17-19

Е, ГПа

700 — 800

800-900

400-600

аи, МПа

600 — 800

800-1100

1400-2000

Таблица 11.19

Окончание табл. 11.19

1

2

3

4

сь, МПа

400 — 500

1000-1300

1400-1700

<7-&, МПа

2500 — 5000

7000-8000

4000-5000

Кіс, МПа /м~1/2

6,5- 8,5

10-17

Работа излома Gic, Дж/м’2

130- 160

220

X, Вт/(т К)

5,0- 10,0

7,0-15,0

10,0

а* 10’5, 1/К

5- 7

3,5-5

5-6

Коэффициент R

15

25

65

Жаропрочность, °С

1000- 1200

700-750

800-900

Характеристика И//*

2

2

2

* Коэффициент стойкости к термоудару R = ,

а Е

0 5 0 8 13

** Эмпирическая характеристика износостойкости И/4 Е ‘ Н:

Поликристаллические сверхтвердые материалы (ПСТМ) систематизируются по таким определяющим признакам, как состав основы поликристаллов, спосо­бы получения, характеристика исходного материала. Вся гамма поликристал­лов разделяется на пять основных групп: ПСТМ на основе алмаза (СПА),

ПСТМ на основе плотных модификаций нитрида бора (СПНБ), композиционные сверхтвердые материалы (КСТМ), двухслойные сверхтвердые композиционные материалы (ДСКМ) [12, 65].

ПСТМ на основе алмазов. Поликристаллы на основе синтетического алмаза можно разделить на четыре разновидности [66]:

1. Поликристаллы, получаемые спеканием мелких алмазных порошков в чистом виде или после специальной предварительной обработки для актива­ции процесса спекания. Изготовленные по такой схеме поликристаллы пред­ставляют собой, как правило, однофазный продукт. Примером могут служить мегадаймонд, карбонит.

2. Поликристаллы алмаза типа СВ. Они представляют собой гетерогенный композит, состоящий из частиц алмаза, скрепленных связкой — второй фазой, которая располагается в виде тонких прослоек между кристаллами алмаза.

3. Синтетические карбонады типа АСПК. Их получают путем воздействия на углеродосодержащее вещество со значительным количеством катализатора одновременно высокого давления и высокой температуры. Плотность таких поликристаллов изменяется в широких пределах, а содержание примесей со­ставляет от 2 до 20% по массе. Поэтому поликристаллы типа АСПК обладают меньшей твердостью и прочностью, чем поликристаллы первых двух разно­видностей.

4. Поликристаллы алмаза, получаемые пропиткой алмазного порошка ме­таллическим связующим при высоких давлениях и температурах. В качестве связки используются никель, кобальт, железо, хром. Алмазные поликристаллы, получаемые по указанному способу, имеют высокие механические свойства.

Физико-механические свойства ПСТМ на основе алмазов представлены в табл. 11.20.

Таблица 11.20

Физико-механические свойства ПСТМ на основе алмазов [65, 66]

Материал

Нагрузка на индентор, Н

Твердость, ГПа

Природный алмаз

9,8

56-102

АСБ

2,0

60

СВА-15Б

65-80

СВБ

90-100

Мегадаймонд

78

Карбонит

9,8

39,2-44,2

АЛВ

9,8

50-65

Компаке

9,8

65-80

Синдит 025

19,6

49,8

Сумидиа ДА-150

9,8

42-50

Сумидиа ДА-200

9,8

42-50

WD-210

9,8

30

Микротвердость поликристаллических алмазов в среднем такая же, как природных монокристаллов, но диапазон изменения ее у синтетических алма­зов шире. Отношение максимального значения к минимальному для различных типов поликристаллов находится в пределах 1,2 -2,28.

Микротвердость на периферии в 1,25 раза больше, чем в центре образца на участках, прилегающих к катализатору.

Плотность синтетических балласа и карбонадо выше, чем плотность при­родных монокристаллов алмаза, что объясняется наличием определенного количества металлических включений. С увеличением концентрации метал­лической фазы практически пропорционально возрастает и плотность.

Теплопроводность поликристаллов алмаза превышает теплопроводность меди и серебра, а в ряде случаев достигает значений теплопроводности моно­кристаллов алмаза. Теплопроводность поликристаллов зависит от температу­ры. Причем для одних материалов с увеличением температуры до 450°С теп­лопроводность возрастает, достигая максимума, а затем снижается. Для дру­гих, типа АСБ и СКМ, — монотонно снижается до 900°С.

ПСТМ на основе кубического нитрида бора. Существует несколько разновидностей ПСТМ на основе нитрида бора.

1. Поликристаллы, синтезируемые из гексагонального нитрида бора (ГНБ) в присутствии растворителя ВМгВМсф (типичным представителем является ком­позит 01);

2. Поликристаллы, получаемые в результате прямого перехода гексаго­нальной модификации в кубическую BNrBN (композит 02);

3. Поликристаллы, получаемые в результате превращения вюрцитопо — добной модификации в кубическую BNg ВМдф. Поскольку полнота перехода регулируется параметрами спекания, то к этой группе относятся материалы с заметно отличающимися свойствами (композит 10, композит 09);

4. Поликристаллы, получаемые спеканием порошков кубического нитрида бора (КНБ) с активирующими добавками (композит 05-ИТ, киборит и др.).

Основные физико-механические характеристики различных марок ПСТМ на основе плотных модификаций нитрида бора приведены в табл. 11.21.

Таблица 11.21

Основные физико-механические характеристики ПСТМ на основе плотных модификаций нитрида бора

Материал

Твер­

сти,

Коэффициенты

Е,

Р.

X,

дость,

ГПа

МПа

Кіс,

МПам1’2

Ц

оИО*6,

К’1

ГПа

г/см3

Вт/(мК)

1

2

3

4

5

6

7

8

9

Композит 01 (эльбор-Р)

35-37

3,9-4,2

0,16

840

3,4

60-80 (при 350- 360 К)

Композит 02 (бельбор)

700

720

3,5

160-180 (при 900 -950 К)

Композит 05- ИТ

19

470

4,6-6,7

620

4,0

4,3

Композит 10 (гексанит-Р)

30,5-

38,6

1000-

1500

3,8-5,9

0,14-

0,16

715

3,28

25-30 (при 360 К) 40-60 (при 950 К)

Окончание табл. 11.21

1

2

3

4

5

6

7

8

9

Киборит

38-42

8,2

0,16

880

3,2-

3,4

100

Боразон

45

5,6

3,48

100-135

Амборит

40

570

6,3

4,9

680

100

Сумиборон

28

Сумиборон

30-35

4,7-5,6

4,2

37,8

Вюрцин

30-40

800

13,0

7,9

20

(при 673 К)

ПСТМ на основе плотных модификаций нитрида бора, незначительно усту­пая алмазу по твердости, отличаются высокой термостойкостью, стойкостью к циклическому воздействию высоких температур и, что особенно важно, более слабым химическим взаимодействием с железом, являющимся основным ком­понентом большинства материалов, подвергаемых в настоящее время обра­ботке резанием.

Поликристаллы типа композит 01 имеют мелкозернистую структуру, доми­нирующей фазой которой являются мелкие зерна КНБ, сросшиеся и взаимно проросшие с образованием прочного агрегата. Примеси равномерно распреде­лены по объему образца. Наряду с основной кубической модификацией в них возможно частичное содержание непрореагировавшего гексагонального нитри­да бора.

Размеры зерен и включений сопутствующих фаз примерно равны 30 мкм, пористость равномерная, составляет 10%.

Композиционные сверхтвердые материалы (КСТМ). Однородные по объему КСТМ получают спеканием смеси порошков синтетического алмаза и кубического или вюрцитного нитрида бора. Сюда относят материалы типа ПКНБ — АС, СВАБ (СНГ), компакт (Япония). Эти материалы следует рас­сматривать как перспективные.

Из материалов этого класса наибольшей микротвердостью обладают мате­риалы СВ-1 и СВ-40, а наименьшей — СВ-14, СВАБ. Невосстановленная мик­ротвердость изменяется от 47,0 до 66,0 ГПа, а модуль упругости — от 640 до 810 ГПа.

К классу композиционных относят также алмазосодержащие материалы на основе твердых сплавов. Из материалов этой группы, хорошо зарекомендо­вавших себя в эксплуатации, следует отметить «Славутич» (из природных ал­мазов) и твесалы (из синтетических алмазов).

Двухслойные композиционные поликристаллические материалы (ДСКМ). Принципиальной особенностью ДСКМ является то, что спекание по­рошков сверхтвердых материалов производится при высоких температурах и давлениях на подложке из твердых сплавов на основе карбидов вольфрама, титана, тантала, в результате чего образуется слой ПСТМ толщиной 0,5-1 мм, прочно связанный с материалом подложки. Алмазоносный слой может со­держать компоненты подложки.

Двухслойные материалы имеют некоторые преимущества по сравнению с однородными по объему СТМ. Упрощается технология крепления режущего инструмента в корпусе державки путем пайки к твердосплавной подложке. Наличие подложки, прочно соединенной с рабочим слоем из СТМ, придает материалам повышенную ударную прочность, а использование слоя СТМ ма­лой толщины (0,5-2 мм) делает их более экономичными, поскольку при затачи­вании и перетачивании инструмента значительно уменьшаются безвозврат­ные потери дорогостоящих сверхтвердых материалов.

К наиболее известным отечественным двухслойным сверхтвердым компо­зиционным материалам из кубического нитрида бора относятся композит 05- ИТ-2С, композит 10Д, ВПК [65, 66], на основе алмаза — ДАП, диамет, АМК-25, АМК-27, БПА, АТП. За рубежом двухслойные поликристаллические сверх­твердые материалы на основе алмаза выпускает фирма «De Beers» (ЮАР) с торговой маркой синдит РКД010 и РКД 025 [48]. Синдит РКД025 рекоменду­ется главным образом для грубой обработки, а более мелкозернистый синдит марки РКД010 — для окончательной обработки.

Области применения инструмента из ПСТМ. Основная область эффек­тивного применения лезвийного режущего инструмента из ПСТМ — автоматизи­рованное производство на базе станков с ЧПУ, многоцелевых станков, авто­матических линий, специальных скоростных станков.

В табл. 11.22 приведены скорости резания, рекомендуемые для обработки различных материалов инструментом из ПСТМ.

Выбор конкретной скорости резания определяется величиной снимаемого припуска, возможностями оборудования, подачей, наличием ударных нагрузок в процессе резания и многими другими факторами.

Следует отметить, что в отличие от рекомендуемых по твердосплавному инструменту скорости резания инструментом из ПСТМ при фрезеровании в 1,5-3 раза выше, чем при точении.

Разработана и выпускается широкая номенклатура инструментов из ПСТМ [65,66]. Это токарные проходные, подрезные, расточные, канавочные, резьбо­вые резцы, в том числе ступенчатой конструкции для снятия повышенных при­пусков с деталей типа прокатных валков, торцовые хвостовые и насадные фрезы, в том числе регулируемые и переналаживаемые, которые могут осна­щаться пластинами из различных инструментальных материалов с опти­мальной для каждого геометрией, гамма расточных напайных и сборных резцов, зенковки, расточные головки и т. д. Для обработки древесностружечных плит на автоматических линиях созданы пилы, оснащенные ПСТМ. Инструмен­ты могут оснащаться как напайными режущими элементами (цилиндрические и прямоугольные вставки, твердосплавные многогранные пластины с напа­янными в одной из вершин ПСТМ), так и сменными круглыми и многогранными пластинами цельной или двухслойной конструкции.

Таблица 11.22

Скорости резания инструментом из ПСТМ

ПСТМ

Обрабатываемый материал

Скорость резания, м/мин при

точении

фрезеровании

ПКНБ

Конструкционные и инструментальные стали, термически не обработанные (HRC < 30)

400-900

Закаленные стали (HRC 35-55) Закаленные стали (HRC 55-70)

50-200

40-120

200-400

80-300

Серые и высокопрочные чугуны (НВ 150-300)

300-1000

600-3000

Отбеленные и закаленные чугуны (НВ 400-650)

40-200

150-800

ПКА

Алюминий и алюминиевые сплавы

600-3000

600-6000

Алюминиевокремниевые сплавы (Si < 20%)

500-1500

500-2500

Медь и медные сплавы

300-1000

300-2000

Композиционные неметаллические мате­риалы и пластмассы

200-1000

200-2000

Древесностружечные материалы

2000-4000

Спеченные WC-Co твердые сплавы

15-30

15—45

Отметим, что для точения с ударом и фрезерования закаленных быстроре­жущих сталей и сталей с высоким содержанием хрома (типа Х12) инструмент из ПСТМ не рекомендуется.

Расчеты [42] показали, что необходимым условием эффективности вне­дрения инструмента из ПСТМ на станках с ЧПУ и обрабатывающих центрах взамен твердосплавных резцов и фрез является увеличение интенсивности съема припуска (объем металла в единицу времени) в 1,5-2,5 раза. Однако практика внедрения высокоскоростного резания указывает на возможность повышения производительности обработки в 3-6 и более раз. Так, при соз­дании автоматизированного завода «Красный пролетарий» для чистовой обработки чугунных корпусных деталей с шероховатостью поверхности Ra 1,25 мкм на многоцелевых станках типа ИР 500 предложено [43] использовать кас­сетные торцовые фрезы d = 125 мм новой конструкции с осевым и ради­альным регулированием положения зачистных радиусных режущих кромок (с точностью не хуже 0,005 мм) квадратных пластин из ПКНБ. Режим резания п = 3000 об/мин; v = 1177 м/мин; SM = 2000 мм/мин; t = 0,3-0,4 мм. При исполь­зовании высокоскоростных станков с п = 6000 об/мин скорость резания воз­растает до 2350 м/мин, подача до 4000 мм/мин, а производительность процес­са резания станет в 10 раз выше по сравнению с существующим уровнем.

Тенденции развития процессов механической обработки резанием позво­ляют утверждать, что в ближайшие годы высокоскоростное резание с широким применением новых инструментальных материалов станет вполне заурядным явлением на предприятиях, оснащенных передовым автоматизированным обо­рудованием.

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.